Component-Oriented I nteroperation of Real-Time DEVS Engines

Mohammad M oallemi, Gabriel Wainer
Dept. of Systems and Computer Engineering

and Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON. Canada.

Federico Bergero
! aboratorio de Sistemas Dinamicos
Carleton University. Centre of Visualization Facultad de Ciencias Exactas, Ingenieria
y Agrimensura. Universidad Nacional de Facultad de Ciencias Exactas y Naturales.
Rosario. CIFASIS-CONICET.
{moallemi, gwainer}@sce.carleton.ca Riobamba 245 bis (2000) Rosario, Argen-
tina

Rodrigo Castro'?
’Departamento de Computacion
Universidad de Buenos Aires.

Ciudad Universitaria, Pabellon .
(1428) Buenos Aires, Argentina.
rcastro@dc.uba.ar

bergero@cifasis-conicet.gov.ar

Keywords:Discrete-Event Simulation, DEVS, Embedded
Systems, Real-Time Simulation and Control, Simatati
Driven Engineering

Abstract

Model reuse and interoperability are cost and effaving

solutions for the simulation-driven developmentenfibed-

ded real-time systems. Different embedded systemases
the same components (e.g. motors, sensors, actuator-

trollers, etc), and remodeling them is costly imte of time

and effort. Instead, by combining different exigtimodels,

developers can improve productivity. To do so, weethpre-
sent a generic lightweight interface for messagastiers

every step in the application development (inclgdilesign,
development, testing, and deployment). M&S is nuly @
foremost component in the development, but alse doe
ther by utilizing the simulated models as the fitsabet ar-
chitecture and also offers reuse of the existingmanents.
This leads to reduced cost and effort, while enimagnsys-
tem capabilities and improving the quality of threaf prod-
uct. The use of formal M&S approaches provides evere
advantages as theory allows model verification dwefore
the actual model is implemented by using formal ebod

verification technique$3][4]. This technique also provides

a reliable test-bed for applications that are impcal or
impossible to verify under the actual operating ditons.

between DEVS models running on different DEVS-basetheploying the same simulation models on the tapjat-

tools. The idea is to allow defining component-ihs®d-
els to be deployed on different tools collaboratingeal-

time. The components work autonomously as separal

DEVS models, and exchange messages at the inpuHout
level over a network infrastructure. We presentr@op of
concept implementation in which we interfaced ECand
PowerDEVS, to DEVS-based tools.

1. INTRODUCTION

Real-time application development has evolveddigpi

because of the fast growing use of automated sgstem

These applications have usually posed interestiafjenges
due to the complexity of the tasks executed. Assthe and
complexity of the application grows, the design qess
tends to demand increasingly challenging multigilcary
development efforts. Real-time systems with hareh-co
straints require a more robust verification mechiemidue

to their critical applicationfl].

A solution that has been successful tackling tipeeb-
lems is the adoption of Modeling and Simulation (B)&
methodologies to help the development task. Iniqdar,
M&S methods using formal backgrounds have showmpro
ising results in making these multidisciplinary teyss de-
velopment tasks manageable. Although M&S is ofteedu
in the early stages of real-time application depslent,
when the focus of the project moves towards thgetam-
plementation, the early-simulated models are ugwiban-
doned. Instead, a M&S-Driven Engineering approfigh
can deal with these activities. The idea is to M&S at

form guarantees effective simulation-based valaatf the

%roduct. Our method is based on DEMS$ (Discrete Event

ystem Specification) a formal modeling approactt thas
originally defined for discrete-event simulationEY’S has
been extended to support M&S development for riead-t
applicationg6][7][8][9], and several DEVS-based modeling
tools are available offering graphical design ifstees for
easier design and verification of the models
[12][14][15].

In the present work, we introduce a practical, egi&n
and lightweight interface for deploying real-timeligions
communicating DEVS models implemented in different
tools. We present our approach applied to sensidenple
models produced for the ECD+4%1] and PowerDEV$12]
toolkits

Our main motivation is to follow a Hardware-In-The-
Loop approach where simulators themselves see @aeh
as distributed real-world devices (black boxes)eriacting
solely at the network messaging level. The maintrdoun
tion of this work is to provide a proof of concegitowing
that distributed M&S-based control applications &&nim-
plemented interfacing ECD++ and PowerDEVS relyingao
very lightweight network-centric mechanism; reusprgvi-
ously implemented models for driving mobile robots
(ECD++) and reusing previously specified DEVS cohtr
lers (re-implemented in PowerDEVS).

Another motive for this work is to introduce a lablo-
ration technique between discrete and continuousSM&

(9]

based systems under DEVS specifications. PowerDE&S
natural choice for implementing continuous and hleon-

trollers in a methodological way in which, it deypsoDEVS

to approximate continuous systems and to solverdifftial

equations by using numerical methods like the Qmedt
State System (QSS) [16]. Our goal is to benefimfrihe

formal and hierarchical features of DEVS to integdathe

discrete models in ECD++ with continuous and hylomes

in PowerDEVS.

2.1. DEVS-Based Tools

ECD++ is a general-purpose object-oriented software
able to execute DEVS models in real-time and allagsrs
to develop hardware-in-the-loop applications bedtde to
integrate real-world phenomena with DEVS-based -envi
ronments. ECD++ deploys real-time services provitigd
the underlying real-time kernel to execute the DEMS
stract simulation algorithm. Its extensions allaw model-
ing and execution of real-time systems with tightiaine
constraints.

The DEVS formalism permits defining hierarchical PowerDEVS is a software tool for DEVS modeling and
models, capable of interacting with each other msgpond- simulation oriented to the simulation of hybrid teyss.
ing to the external events. The structure is comgosf Among other features, it can perform real-time dations
atomic andcoupled components, in which the atomic com- permitting the design and implementation of synobis
ponents are the main behavioral and processindiesnti and asynchronous digital controllers. Combined witth

2. DEVS

while the coupled components are responsible fontaia-
ing the hierarchical structure and the couplingsvben the
components.
A DEVS atomic component is formally defined by:
AM =< X, S, Y,8ex Oint, A, ta >, where:
« X: a set of external input event types
< S: a sequential state set
* Y: an output set
e dee Q X X— S, an external transition function
* Where Q is the total state set of M = {(s, e)J|$ and
0<ec<ta(s)}
* 3. S— S, an internal transition function
e A: S— Y, an output function
» ta: S— R%,, a time advance function which maps
each state to a time interval

A coupled component connects the basic componen{%e

together in order to form a new model. This compbran
itself be employed as a component in a larger @slpiod-
el, thereby allowing the hierarchical constructioincom-
plex models. The coupled model is defined as:
CM =<X, Y, D, {Mq4dOD}, EIC, EOC, IC,Select>
, Where:
e X ={(p, v) | pO IPorts, v Xp} is the set of input
ports and values;
Y ={(p, v) | pO OPorts, V1 Yp} is the set of output
ports and values;
« D is the set of the component names
The component coupling is subject to the followieg
quirements.External input couplingdEIC) connects external
inputs to component inputs: EIT{((N, ipy), (d, ipy)) | ipy O
IPorts, dID, ipg0IPorts}, External output couplindeOC)
connects component outputs to external outputs: EJ(d,
opy), (N, opy)) | o,y OPorts, dD, opydOPortg}, Internal

coupling (IC) connects component outputs to component in

puts: IC {((a, opy, (b, ip)) | a, KID,0p,00Ports,
ip,0IPorts}, and SELECT 2 — M is a tie-breaking selec-
tor.

continuous system simulation library (based on @@S

guantization-based numerical methods) PowerDEV&nis
efficient tool for real-time simulation of physicgystems. In
presence of strong discontinuities, it simulatessigy fast-

er than classic tools based on traditional humkrntegra-

tion algorithms.

Due to these features, PowerDEVS has many potentia
users in the real-time automatic control commurmitpstly
composed by non-DEVS-users. To tackle this gap,dPow
DEVS offers a graphical interface very similar tmse of
the most popular tools for modeling, simulation amgle-
mentation of real-time controllers (Simulink, Sa¢cetc.)

3. RELATED WORKS

The idea of distributed simulation using DEVS has
en followed in previous workgL7][16][18][19] where
sophisticated middleware are proposed to deal isibes
such as synchronization, fault-tolerance and messagt-
ing, among others. While these approaches are yntin
geted for simulation only, they require heavy méldhre
implementation and knowledge and are only desigioed
execute a simulation model in a distributed manner.

A split simulation consists of a source system wehos
components are broken into two or more groups por
execution. These groups of components run undearaep
simulators that may or may not be implemented usireg
same simulation engine. Previous approaches (DENS/H
[22], DEVS/JAVA [15], Parallel CD+H21]) implemented
middleware for making virtual-time simulators cbitaate
based on splitting the execution among distribyieates-
sors, but composing a single simulation engine.

Another more related approach to our work is tatgn
[20] which uses independent distributed real-tinrausa-
tion engines that accept the internal wrapping eléced
components wishing to interact with other simulattools
at a high level. Wrappers hide the components aodige a
means of communication with components modelechén t

foreign environments. Our approach is very simitathis

one, but relies completely on network messagesowithe-
quiring the concept of wrappers. This generic fiaiss-
based implementation can be easily implementednte-
gration of different tools, requiring minimal modition to
the simulation engine.

4. THE PROPOSED APPROACH

Models developed for a specific tool can be
implemented into another tool by following their Y&
formal specification. However, this is an error peoand
time-consuming approach. A more robust and scaksthée-
egy is to keep components implemented in theirimaig
DEVS tools and make them interact over a networkrae
and distributed infrastructure. This approach exeticen-
tralized coordinators. However, in our decentralizap-
proach, applications resulting from the collabamtactivity
of distributed simulators (and other real-world ideg) must
be designed to be as robust as required in thempresof
anomalies (e.g., packet loss, corruption, and sepigver-
sion). The participating DEVS engines do not needarry
about clock synchronization as it is handled at el
level.

In this approach, the output ports of a DEVS madel
interfaced to input ports of another DEVS model.i/the
simulation engines are running in real-time, diéfgr mod-
els can join this distributed network of running eets and
feed from the outputs of other models while comntlig
their own outputs to the other models in the nekwdihe
network interface for each DEVS port can be impletae
in a different way (even using different networlotarcols),
thanks to the abstract global message structurérdosfer
of the DEVS outputs. This is a lightweight, decadpl
physically-based method to provide a unified notdrime
advance across simulators. On the other handietimique
excludes the interchange of messages carrying whestiine
references. Thus, the component-oriented aspeBtEMS
allows different coupled components of a DEVS-basesd
tem to operate autonomously following a common miays
notion of time advance. This plays the role of arplicit
synchronization mechanism for event transfers betwe
DEVS tools.

The approach delegates to the modeler the redplonsi
ity of being aware about the worst case scenaripsaed
for many real-world non-ideal behaviors. For ins&rclock
crystals of the hardware platforms hosting eachukitor
may drift, network latencies may vary consideraidypend-
ing on load conditions, and also messages can tvapted
or delivered disordered. While these and other niiae
problems can be tackled by adding fault toleraneetma-
nisms into simulator engines and/or underlying camita-
tion infrastructures, there exist applications ihieh they
can be regarded as non-critical.

4.1. Requirements

To implement the proposed communication scheme, a

global message architecture is required. The messag
supposed to carry DEVS outputs of one model toirtpat
port(s) of other model(s) over a communication tay&
DEVS output set (Y) —defined in the DEVS formal sipe
fication— (see section 2) contains the (port, valoair, in

re-which the port is the output port and the valuéhis actual

output value produced by the model. We need tosfean

this pair over the network and inject it to anotimeodel

running on another DEVS tool as an input pair. Tdilew-
ing are the DEVS I/O message fields:

« Port_ID: an integercontaining the destination model’s
input port id. Based on this field, the receivingdsl
delivers the input to the correct input port.

e Value: a character array carrying the value. The value
can also be a sequence of values send to a spegpific
port in the destination model. The format of thpuh
value is interpreted by the input interface atdbetina-
tion model
The generic message structure allows for submittin

different types of data between networked modelsnds-
sage interface at each DEVS port of the model pes/the
embedding of the message as a network packet arek-t
traction at the destination. Each port owns an pedeent
interface, which can be configured to submit anckeine
different types and formats of the messages.

5. EXAMPLE: E-PUCK OBSTACLE AVOIDANCE

Previous experimentation with ECD++ and DEVS
models for mobile robot control applications madailable
a repository of target-specific low-level drivefss control-
ler complexity grows and new requirements arisbeitame
convenient to split system’s design tasks into isieed
and collaborative teams, reusing both experiencepaavi-
ously developed solutions. Following a componerseoa
approach, we plan to split a robot control modeixto main
components: one for the control algorithms and rofoe
dealing with robot-specific drivers.

As a case study, DEVS was used to develop a dtwtro
for the e-puck robd23]. E-puck is a mobile robot with sen-
sors and motors (see Figure 1-a). It is composezigbit in-
frared distance proximity sensors (IR), eight LEDgunted
on the top of the robot (see Figure 1-b), and tvedoms.

Forward Direction

Figure 1: a) e-puck robot b) sensorsand LEDs
51. TheDEVSModd

The controller model is designed to steer the raba
field while avoiding obstacles. We have defined BM3
model with an atomic component (e-puck0) rendetimgy
behavior of the controller of the robot and a cedptom-
ponent (Top) containing the atomic component aredctiu-
plings. There are 8 input ports (InIRO,INIR7) to the
DEVS model, each of them receives input from orexpr
imity sensor mounted on the robot. These inputsppéri-
odically receive the distances to the obstacles filwe sen-
sors. There are also two output ports: OutMotangfer-
ring the output commands to the motors and OutLE&Ns-
ferring LED on/off commands to the LEDs.

Based on the inputs received from the censors;zdhe
troller takes the following different decisionmove for-
ward, turn 45 degrees left, turn 45 degrees right, tuth 9
degrees left, turn 90 degrees right, turn 1&ditially, the
robot starts moving forward while receiving theipédic in-

epuck0

Turn,e-”p‘lr.lck left
Tum LED7 ON

ant rig

Front left ope

----- ~“Meve.e-puck forward
Turn LEDOON--.____

Turn e“puck left
Turn LEP6 ON

Move e-pu}:k forward
% Tum LEDO ON

urn 180°
Left k.
2s urmn-e-puck left prepare tq
Turn LED4-QN/ Turn 180°
Left
0Os

puts from proximity sensors and analyzing themséasn as
an obstacle is detected, it performs one of theingrac-
tions (to avoid the obstacle) based on the diractibthe
obstacle. The robot keeps turning until finds apgnspace
in front of it. The controller also uses LEDs tgrsl the ac-
tion that is being performed.

Figure 2 illustrates the state diagram of the ekpu

atomic component. The DEVSGraph state diagiad
summarizes the behavior of a DEVS atomic compobgnt
rendering the states, transitions, inputs, outpntsstate du-
rations of the atomic component graphically. Thetow-
ous edges between the states represent externsitioas,
with the input port, the input value and any coioditon the
input. The dashed lines represent internal tramstiwith
the associated outputs.

Initially, the robot moves forward and if no obdtais
detected from IR0, IR1, IR6 and IR7 (the four seaszan-
ning the front), it continues moving forward. Asosoas an
obstacle is detected, the value of IR6 sensor ésifpally
examined. If this sensor shows no obstacle, thexefe left
corner of the robot is open resulting in a 45° ttowards
the left side. Otherwise, it checks the IR1 valuel & it
shows an open space, the robot turns 45° to the tigooth
IR1 and IR6 are blocked, the controller examine? $Bnsor
and if it shows an open space, the robot perfor®8°aurn
to the left. The same story happens when IR2 iskeld and
IR5 is open, resulting in a 90° turn to the rightall of the
sensors are blocked, the robot tries turning todgosite
direction (180°).

Turn e-ﬁuck right
Tum LED2 ON

Left'blocked

5
3
N
ECINNS
O e
@“‘“
Tum e-puck right
Turf LED1 ON

Figure 2: E-puck atomic component state diagram

5.2. ThePartitioned M odel

The e-puck logical controller is divided into twarts: The e-puck robot communicates with thever model
the Controller and theDriver. The Controller is the main running on workstation 1 via Bluetooth connectidrhe
decision making unit, where the commands to avbistaa Controller model runs on another workstation communicat-
cles are generated. Tlgiver model works as a client who ing through network infrastructure with tiriver. Figure 4
forwards the inputs from robot to theontroller and the depicts the e-puck collaborative DEVS model detdite e-
outputs fromController to the robot. The interface to the puck Controller receives IR sensor values frdmR input
robot is part of theDriver model. Figure 3 illustrates the port via the network and sends the motor outputSutivio-
partitioned e-puck model running on two workstasion tor output port, which is forwarded to tigiver model. The
Driver receives the IR sensor values from the e-pucktrobo
through eight input ports, and submits them toGoatrol-
ler model by serializing them through one output pdhis
method reduces the network traffic while encapsujaall
&3 the values into one network packet. T@entroller model
. ie does not deal with LED commands, while the e-plDaker
model generates these commands based on the nooter c
mands received from th@ontroller.

Controller Driver

Figure 3: the partitioned e-puck model

R IniR ‘M‘ OutR | IR2net IR0 InIRO Proximity
< < (NEetWOorK 4« < pH P { sensors
InIR7

Epuck Epluck
Controller Driver LED OutLED
» »~ LEDs

Motor OutMotor ‘m’ InMotor Net2Mptor Motor OutMotor
> »C Network) > > > »~ Motors

Figure 4: e-puck controller collaborative DEVS model

5.3. Implementation of The Partitioned M odel Finally, it forwards the inputs as an array of wsembed-
The Controller model is implemented on PowerDEVS ded in a network packet via tigutIR port to theController

and theDriver on ECD++. We use UDP network protocol running on PowerDEVS. ThBriver stays inidle state lis-

for message transfer over an Ethernet network. \Ake h tening to the inputs from IR sensors and frolotor port,

chosen UDP over TCP for its simplicity, and sinbe &x- where the motor commands are received fromQbatrol-

periments were done on a local network, the chamfes ler. The Driver generates the appropriate LED commands

loosing a UDP datagram were negligible. based on the received motor commands and forwasia t
to the robot. Therefore, a generic Controller madeining
5.4. The ECD++ part (Robot Drivers) on a different simulator with different platform ised to

ECD++ provides generic user-implemented interfacesontrol a specific robot with different platforrpdls, and
for DEVS model’'s border ports. Using this featutbe interfaces. Each DEVS output is associated withaetion
model can interact with the external world (e.grdissare on the robot. The driver functions of the robotpaatports
and network) by overriding an abstract C++ drivendtion (OutLED andOutMotor submit the commands to the robot

for each port via Bluetooth connection. An embedded program enrth
We implemented th®river model (Figure 4) in which bot will carry out the commands on the robot handwa
the OutiIRandInMotor DEVS ports were interfaced with the The following is a code snippet of the implemeiotat

network andnIRQ, ..., InIR7, OutLED, andOutMotorwere of InMotor input port driver function on ECD++ (the other
interfaced with the robot hardware. TBéver is initially in DEVS port driver functions are implemented in aim
idle state waiting for the periodic inputs from IR serss As method):

soon as it receives the first value from an IR eenthe | 1 bool I nMtor:: pDriver(Val ue &al ue){
former buffers it until it receives the inputs df sensors. | 2

3 if (recvfrom(s, &buff, BUFLEN, O, commands: MOVE_FORWARD, TURN_45_LEFT,
(struct sockaddr *) &si _ot her, TURN_90_LEFT, TURN_45 RIGHT, TURN_90_RIGHT,
&sl en) ==-1){ or TURN_180.
4 ... We introduced two new blocks for connecting thevPo
5 return false; erDEVS side with ECD++. These blocks a&etSendand
6 } NetReceiveln Figure 5, the IR block is an instanceN#-
7 ... tReceiveand it receives the data from ECD++ and injects
8 network_nsg result; them to the PowerDEVS simulation. TBeitMotoris an in-
9 mencpy((void*)& esult, (void*)&buff, si stance oNetSendit receives the events from tRentroller
zeof (result)); and sends them to ECD++ through the network.
10 int i;
11 mencpy((void*)& , (void*)result.val ue,] epuck controller g @ &
si zeof (| nt)) : Filz Edit Yiew Format Slniu\atlnn Debug Mo_deIDocumentat\on ﬂ_alp
12 value = i: D =Bl |20 | ¢0 0 ¢l
13 return true;
14 } —
S Trarsnon2
Line 1 is the header of the driver function, whish 4 P
supplied by ayrefrenceparameter (“value”) which will be s B S"”%
filled with the input received from the network.ne 3)
shows the blocking UDP receive function where biuéf RS Duotor
parameter will be filled by the network messagee hbt- R
work messagstruct (defined in 4.1) declared in line 8 is ot
filled in line 9 with the message received. Theuatmotor .
output is extracted from this message in line 1d &nas- Figure5: Power DEV'S controller model
signed to “value” parameter. The input driver fuoecs are . .)
separate real-time threads, which are only resptengor TheNetSendlock is responsible for sending the_ev_ents
grabbing inputs from the environment (network). from EowerDEVS to ECD++. It has a parameter todat#
to which UDP port should send the message (theltiPeas
5.5. ThePowerDEVSpart (Robot Controller) is fixed in the coo!e). . -

The PowerDEVS part implements the DEVSGraph TheNetReceivélock is in charge of receiving the UDP
shown in Figure 2 (excluding the LED outputs). Any messages from_ ECD++ and forward them to the coReet
DEVSGraph model can be directly converted into wéte ~ WETDEVS atomic component. _ _ _
DEVS atomic model by the following method: The PowerDEVS simulation engine will receive the

* The state of the atomic is defined by @amum variables]EJDP rge_ssager; read the po(;’_[_id fEId ffoglthi p_le_wlaﬁd
indicating the actual DEVSGraph state (this vagawill orward it to the correspondinjetReceiveblock. To this

have as many values as DEVSGraph statesksignti, a eDnEo{,/éhe St'mtudl\lat'?g enggf mkternallythgldts_a_tmle_lgﬁtrom
real value variable to hold the state duration. ports tavetreceivelocks, created at initialization.

 For each edge from stasg to states? (s2 having a dura- 56. The common network messages semantics
tion t2=ta(s2)) we add a case in the internal/external func- As said before, the content of the UDP message is

tion: ' : .
; —— —e9 ai — o fixed-size buffer were sender and receiver havagi@e on
« If the Iefd Ees|s_f—rz?n) ar{1 eit_esriéll t?;lr?srirt?gr: 2\/;/e }hm/add q @ format. The/aluefield of the global message (section 4.1)
check togsee if the inout value is the on’e thaggs the is used with the following semantics for differgumtrts:
P » For messages going from ECD++ to PowerDEVS the buf-

transition. If the edge is from an internal traiosif we .
: - fer contains 8 doubles (8 bytes each - IEEE 75@)ere
have to emit the output event(s). In PowerDEVS temgj senting the magnitude of each IR of the e-puck.

multiple events in one transition is prohibited,vee have X
to emit them one at a time (in multiple internansi- ° For messages going from Eov_verI_DEVS _to ECD++, we
tions). only send one 4 byte integer indicating which comdhto

The PowerDEVS model can be seen in Figure 5 wheresenoI to the motors.
the IR block receives the value of the 8 IR senfonms the

e-puck and forwards them to tl®ntroller. The Controller 6. SVESULTdS d . . impl . h
depending on values, change its state and emithetce- e conducted various experiments implementing the

puck through theOutMotor block one of the following example model presented in section 5. To show ekelts

of the two simulators collaborating over a netwaoxle, pre-
sent a log file of the experiment with real-timedistamps,
and discuss the results.

Figure 6 shows the input and output log files GTH+
simulator. The input log file records all the réiate incom-
ing data (from the environment) to the model’s inparts
while the output file saves all the outputs of aM3Emodel
(with microseconds precision). The inputs and dssed
outputs are marked with red boxes in the figurethin first
box of the input file, two series of the IR sensafues in-
putted at time zero and after 50 milliseconds amw (the
IR sensor inputs are received every 50 millisecgndke
first box of the output file shows the output te tButiR
port, which triggers the output driver associatedhis port
to send the array of inputs containing the valdas® eight
IR sensors. Therefore, when all of the IR values ia-
ceived, they are forwarded to ti@ontroller. Box 2 of the
input file shows an input signal received fromMotor port
containing value “1”, which is interpreted in boxo? the

output file with the accompanying LED commands @tid

PowerDEVS ECD++
Controller Driver (e-puck robot)
[HU\
Move forward
t=0.88sec
=
2
=
El
=
)
. Q.
: Front is blocked
t=2.45 sec Y&
I Turn 180 :
t=2.53 sec >=
P g
EX
3
Move forward
t=4.55 sec
. =
]
: &
' Ed
\4 g

Figure 7: Sequence diagram of the simulation

by theDriver). The same sequence happens in box 3 where

the robot has found an obstacle and the assoditednsor
values are forwarded to ti@ontroller, hence the&ontroller
is instructing the robot to spin 180 degrees.

ECD++ Input Log File

00:00:00:000:990 inir0
inirl

inir2

0.0738992
0.0736404
0.0706652
0.0702771
0.0665256
0.0609632
0.0658788 4—+
0.0748047

ECD++ Output Log File

inir3
inird
inirs

T Send IR Values
{— Send IR Values

00:00:00:001:967
00:00:00:052:856

outir
outir

iniré
inir7
iniro
inirl
inir2

00738992 .{00:00:00:999:599

outled
outmotor
outled

- Turn all LEDS OF1
—Move Forward
T Turn LED 0 ON

0-0736404 00:00:00:888:695

0.0706652
0. 0702771 00:00:00:888:793

0.0665256
0.0609632
0.0658788
0.0748047

inir3
inird
inirs

outmotor
outled
outled

- Turn 180°
= Turn LED 0 OFF
[Turn LED 4 ON

00:00:02:538:248
00:00:02:538:351

)
H

o muwl oo
o el o

iniré
inir?7

+00:00:02:538:095

00:00:04:590:298 outled 100}
outmotor 1
outled 1
outmotor 2
outled o
outled 71

—# Turn all LEDS OF1
- Move Forward

[Turn LED 0 ON

[Turn 45° Left
—Turn LED O OFF
[Turn LED 7 ON

inmotor 1 |

|

6
inmotor 1
inmotor 2

[00:00:00:888: 086

00:00:04:590:448
00:00:04:590:548
00:00:04:591:178
00:00:04:591:277
00:00:04:591:376

[00:00:02:506:446 inmotor

\ S—n
b‘\L ot

00:00:04:558:369
00:00:04:590:728

Figure 6: ECD++ input and output log files

A selected progression of UDP messages interchiakga
from the simulation results can be seen in the eecpi dia-
gram of Figure 7. The messages going from the Gbeitr
to the Drivel model are motor commands (the same s
log in Figure 6) while the messages from the Driwethe
Controller are the values from the 8 IR sensorsofding
to these values, th€ontroller is in charge of deciding
whether the front is blocke(see message label&eront is
Blocked”in Figure 7).

A video of the collaborative e-puck model in acticem be
viewed online if25].

7. CONCLUSION

We introduced a generic lightweight interface fat-
work 1/0 message transfers between DEVS modelsimgnn
on different DEVS-based tools. We showed the silityab
of our approach by reproducing experiments witlegruck
robot and a collision avoidance application, marmitg cor-
rectness for behavior (qualitatively) and networkssaging
(quantitatively). The robot succeeded to perfornstatie
detection and direction changing when the origDBVS-
based system was split into two distributed reaktmodels
Controller and Drivers running on PowerDEVS and
ECD++, respectively.

Thanks to the unambiguous formal specification of
DEVS, the problem of splitting a model into compuotse
deployable to distributed real-time tools can beficed in-
to an implementation layer, preserving original laspeci-
fications. Also thanks to DEVS formal definitiorhet task
of migrating subcomponents previously developed for
ECD++ to PowerDEVS can be synthesized into a rejpéat
procedure, minimizing effort and errors. Anothettguial
advantage of interfacing ECD++ to PowerDEVS is ¢bke
laborative execution of discrete and continuousesgs un-
der DEVS specifications.

Nevertheless, in the approach presented in thik wor
some limitations must be observed. Messages asimssa-
tors cannot bear time references into their sermsrigaving
the synchronization to the modeling level, where tiodels
should be in proper states while transferring d#et, for
those applications where synchronization is mangiato-
ditional logical layers for exchanging timing sidmaan be

implemented on top of the networking framework préged [12]Federico Bergero and Ernesto Kofman. “Powerdevs: A

in this work. This represents the basis of our mesearch Tool for Hybrid System Modeling and Real-time Simu-
steps and efforts. lation”. SIMULATION, 2010.
[13]Ernesto Kofman. “Discrete Event Simulation of Hybri
References Systems”. SIAM Journal on Scientific Computing,
[1] Liu, J. "Real-Time Systems". Prentice-Hall, = 25(5):1771-1797, 2004.
2000. [14] Traoré, M. 2008, “SimStudio: a next generation nhode
[2] G.Wainer, E. Glinsky, P. MacSween “A Model-Driven ing and simulation framework”. Proceedings of SIMU-

Tools 2008. Marseille, France.

T15] Sarjoughian, H; Zeigler, B. 1998, “DEVSJAVA: Basis
Software Development - Volume Il of Research and for a DEVS-based coIIaborative M&S environment'
Practice in Software Engineering. S. Beydeda and V. proceedings .Of the .Intern.atlonal Conference on Web-
Gruhn Eds. Springer-Verlag. 2005. based l.\/lodelling & Simulation, San Diego, CA.

[3] S.Merz, N. Navet. “Modeling and Verification of &e [16]Francois Cellier and Ernesto Kofman “Continuous-Sys

’ tem Simulation” Springer, New York, 2006.

Cho, Y. K., Hu, X. Zeigler, B.P. “The

RTDEVS/CORBA Environment for Simulation-Based

Design of Distributed Real-Time Systems”, Simulatio

Technique for Development of Embedded System
Based on the DEVS Formalism”. In Model-driven

Time Systems: Formalisms and Software Tools”. JOhT17
Wiley & Sons, publishing Inc. 2008.]

[4] H. Saadawi, G. Wainer. “Verification of real-time
DEVS models”. Proceedings of DEVS Symposium

2009. San Diego, CA. 2009 Transactions of the Society for Modeling and Simula
5] B Ze.igler T Kirr’1 H .PraeHofer “Theory of Modafj tion International, Volume 79, Number 4, 2003.
and Siml,JIation”.’ Academic Press 2000, ISBN-10:[181Kim, Y.J. and Kim, T.G. “A heterogeneous distritdite

0127784551 simulation framework based on DEVS formalism”,
[6] Hong J. S éong H. H Kim T. G. and Park K. H “A Proceedings of the Sixth Annual Conference On iArtif

Real-Time Discrete Event System Specification For- cial Intelligence, Simulation and Planning in High

: : Autonomy Systems, pp 116-121, 1996.
malism for Seamless Real-Time Software Develop- . ! .
ment” 1997, Springer Netherlands. [19]Kim, Yong Jae and Kim, Jae Hyun and Kim, Tag Gon

[7] Hu, X.; Zeigler, B.P. “Model Continuity in the Degi “Heterogeneous Simulation Framework Using DEVS

of Dynamic Distributed Real-Time Systems”, |IEEE 0 EUS;SLMULéA‘TIOGN’ 2\?\/03. d B. P. zeidl

Transactions on Systems, Man And Cybernetics— Paf¢0lLombardi, S., . amner, daln i DEVS/ eig e(rj.
A: Systems And Humans, 35: 6, pp. 867- 878, Novem- Interq,peratmn 0 DEVS models in DEVS/C# an
ber, 2005. CD++" Proceedings of SISO Fall Interoperability

[8] Cho S. M. and Kim T. G. “Real-Time DEVS Simula- 21 TWorkskll_op,AH.un\t/?/vi_lle, ALEBZO(‘)‘? | " parallel
tion: Concurrent, Time-Selective Execution of Com-[]Troccoli, ” aine, - implementing Faralle

bined RT-DEVS Model and Interactive Environment” CD++". Proceedings of the Annual Simulation Sympo-

In Proceeding of 1998 Summer Simulation Conference sium. erandp, FL. 200.3' .
Reno. Nevada. [22]H. Sarjoughian, B. Zeigler “DEVS and HLA: Compli-

[9] Moallemi, M..; Wainer, G. "Designing an Interfaer f mentary Paradigms For M&S?", Transactions of the

Real-Time and Embedded DEVS", Proceedings 0{23 ECS \LOI' 1;, bp- 1?)7'.197’ 20_(|)Ob| . hitp://
Symposium of Theory of Modeling and Simulation, Or-]E-puck robot website available at: http://www.e-

lando, FL, 2010. PUCk-OTQ’- . . . " .
[10]Wainer, G. "CD++: a toolkit to define discrete-even [24]G. Christen, A. Dobniewski a_md G. V\{lamer, Model_lng
models". Software, Practice and Experience. Wiley. State-Based DEVS Models in CD++". In Proceedings

Vol. 32, No.3. pp. 1261-1306. November 2002 of MGA, Advanced Simulation Technologies Confer-

[11]YU, J.; WAINER, G. “ECD++: a tool for modeling __ €Nce 2004 (ASTC'04). Arlington, VA. U.S.A.

C o . 5]Shared e-puck model video, available at:
embedded applications”. In Proceedings of the 200+2) .
SCS Summer Computer Simulation Conference. San http://www.youtube.com/arslab#p/u/12/iRqrwkPL-kQ
Diego, CA. 2007. accessed Jan. 2010.

