
Component-Oriented Interoperation of Real-Time DEVS Engines 
 

Mohammad Moallemi, Gabriel Wainer 
Dept. of Systems and Computer Engineering 
Carleton University. Centre of Visualization 

and Simulation (V-Sim) 
1125 Colonel By Dr. Ottawa, ON. Canada. 
{moallemi, gwainer}@sce.carleton.ca 

 

Federico Bergero 
1Laboratorio de Sistemas Dinámicos 

Facultad de Ciencias Exactas, Ingeniería 
y Agrimensura. Universidad Nacional de 

Rosario. CIFASIS–CONICET. 
Riobamba 245 bis (2000) Rosario, Argen-

tina 
bergero@cifasis-conicet.gov.ar 

Rodrigo Castro1,2 
2Departamento de Computación 
Universidad de Buenos Aires.  

Facultad de Ciencias Exactas y Naturales. 
Ciudad Universitaria, Pabellón I. 
(1428) Buenos Aires, Argentina. 

rcastro@dc.uba.ar 

Keywords: Discrete-Event Simulation, DEVS, Embedded 
Systems, Real-Time Simulation and Control, Simulation-
Driven Engineering  
 
Abstract 
Model reuse and interoperability are cost and effort saving 
solutions for the simulation-driven development of embed-
ded real-time systems. Different embedded systems share 
the same components (e.g. motors, sensors, actuators, con-
trollers, etc), and remodeling them is costly in terms of time 
and effort. Instead, by combining different existing models, 
developers can improve productivity. To do so, we here pre-
sent a generic lightweight interface for message transfers 
between DEVS models running on different DEVS-based 
tools. The idea is to allow defining component-based mod-
els to be deployed on different tools collaborating in real-
time. The components work autonomously as separate 
DEVS models, and exchange messages at the input-output 
level over a network infrastructure. We present a proof of 
concept implementation in which we interfaced ECD++ and 
PowerDEVS, to DEVS-based tools. 
 
1. INTRODUCTION  
 Real-time application development has evolved rapidly 
because of the fast growing use of automated systems. 
These applications have usually posed interesting challenges 
due to the complexity of the tasks executed. As the size and 
complexity of the application grows, the design process 
tends to demand increasingly challenging multidisciplinary 
development efforts. Real-time systems with hard con-
straints require a more robust verification mechanism, due 
to their critical applications  [1].  
 A solution that has been successful tackling these prob-
lems is the adoption of Modeling and Simulation (M&S) 
methodologies to help the development task. In particular, 
M&S methods using formal backgrounds have shown prom-
ising results in making these multidisciplinary systems de-
velopment tasks manageable. Although M&S is often used 
in the early stages of real-time application development, 
when the focus of the project moves towards the target im-
plementation, the early-simulated models are usually aban-
doned. Instead, a M&S-Driven Engineering approach  [2] 
can deal with these activities. The idea is to use M&S at 

every step in the application development (including design, 
development, testing, and deployment). M&S is not only a 
foremost component in the development, but also goes fur-
ther by utilizing the simulated models as the final target ar-
chitecture and also offers reuse of the existing components. 
This leads to reduced cost and effort, while enhancing sys-
tem capabilities and improving the quality of the final prod-
uct. The use of formal M&S approaches provides even more 
advantages as theory allows model verification even before 
the actual model is implemented by using formal model 
verification techniques  [3] [4]. This technique also provides 
a reliable test-bed for applications that are impractical or 
impossible to verify under the actual operating conditions. 
Deploying the same simulation models on the target plat-
form guarantees effective simulation-based validation of the 
product. Our method is based on DEVS  [5] (Discrete Event 
System Specification) a formal modeling approach that was 
originally defined for discrete-event simulation. DEVS has 
been extended to support M&S development for real-time 
applications  [6] [7] [8] [9], and several DEVS-based modeling 
tools are available offering graphical design interfaces for 
easier design and verification of the models [9] 
 [12] [14] [15].  

 In the present work, we introduce a practical, generic 
and lightweight interface for deploying real-time solutions 
communicating DEVS models implemented in different 
tools. We present our approach applied to sensible example 
models produced for the ECD++  [11] and PowerDEVS  [12] 
toolkits 

Our main motivation is to follow a Hardware-In-The-
Loop approach where simulators themselves see each other 
as distributed real-world devices (black boxes), interacting 
solely at the network messaging level. The main contribu-
tion of this work is to provide a proof of concept showing 
that distributed M&S-based control applications can be im-
plemented interfacing ECD++ and PowerDEVS relying on a 
very lightweight network-centric mechanism; reusing previ-
ously implemented models for driving mobile robots 
(ECD++) and reusing previously specified DEVS control-
lers (re-implemented in PowerDEVS). 

 Another motive for this work is to introduce a collabo-
ration technique between discrete and continuous M&S-



based systems under DEVS specifications. PowerDEVS is a 
natural choice for implementing continuous and hybrid con-
trollers in a methodological way in which, it deploys DEVS 
to approximate continuous systems and to solve differential 
equations by using numerical methods like the Quantized 
State System (QSS) [16]. Our goal is to benefit from the 
formal and hierarchical features of DEVS to integrated the 
discrete models in ECD++ with continuous and hybrid ones 
in PowerDEVS.  
 
2. DEVS  
 The DEVS formalism permits defining hierarchical 
models, capable of interacting with each other and respond-
ing to the external events. The structure is composed of 
atomic and coupled components, in which the atomic com-
ponents are the main behavioral and processing entities 
while the coupled components are responsible for maintain-
ing the hierarchical structure and the couplings between the 
components.  
 A DEVS atomic component is formally defined by: 

AM = < X, S, Y, δext, δint, λ, ta >, where: 
• X: a set of external input event types 
• S: a sequential state set 
• Y: an output set 
• δext: Q × X → S, an external transition function 
• Where Q is the total state set of M = {(s, e) |s ∈ S and 

0 ≤ e ≤ ta(s)} 
• δint: S → S, an internal transition function 
• λ: S → Y , an output function 
• ta: S → R+

0,∞, a time advance function which maps 
each state to a time interval  

 A coupled component connects the basic components 
together in order to form a new model. This component can 
itself be employed as a component in a larger coupled mod-
el, thereby allowing the hierarchical construction of com-
plex models. The coupled model is defined as: 

CM = <X, Y, D, {Md|d∈D}, EIC, EOC, IC, Select> 
, where: 

• X = {(p, v) | p ∈ IPorts, v ∈ Xp} is the set of input 
ports and values; 

• Y = {(p, v) | p ∈ OPorts, v ∈ Yp} is the set of output 
ports and values; 

• D is the set of the component names   
The component coupling is subject to the following re-

quirements. External input coupling (EIC) connects external 
inputs to component inputs: EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ 
IPorts, d∈D, ipd∈IPortsd},  External output coupling (EOC) 
connects component outputs to external outputs: EOC ⊆ {((d, 
opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd},  Internal 
coupling (IC) connects component outputs to component in-
puts: IC ⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, 
ipb∈IPortsb}, and SELECT: 2M → M is a tie-breaking selec-
tor. 

 
2.1. DEVS-Based Tools 

ECD++ is a general-purpose object-oriented software 
able to execute DEVS models in real-time and allows users 
to develop hardware-in-the-loop applications being able to 
integrate real-world phenomena with DEVS-based envi-
ronments. ECD++ deploys real-time services provided by 
the underlying real-time kernel to execute the DEVS ab-
stract simulation algorithm. Its extensions allow for model-
ing and execution of real-time systems with tight dedaline 
constraints.  

PowerDEVS is a software tool for DEVS modeling and 
simulation oriented to the simulation of hybrid systems. 
Among other features, it can perform real-time simulations 
permitting the design and implementation of synchronous 
and asynchronous digital controllers. Combined with its 
continuous system simulation library (based on the QSS 
quantization-based numerical methods) PowerDEVS is an 
efficient tool for real-time simulation of physical systems. In 
presence of strong discontinuities, it simulates sensibly fast-
er than classic tools based on traditional numerical integra-
tion algorithms. 

 Due to these features, PowerDEVS has many potential 
users in the real-time automatic control community, mostly 
composed by non-DEVS-users. To tackle this gap, Power-
DEVS offers a graphical interface very similar to those of 
the most popular tools for modeling, simulation and imple-
mentation of real-time controllers (Simulink, Scicos, etc.)

  
3. RELATED WORKS  
 The idea of distributed simulation using DEVS has 
been followed in previous works  [17] [16] [18] [19] where 
sophisticated middleware are proposed to deal with issues 
such as synchronization, fault-tolerance and message rout-
ing, among others. While these approaches are mainly tar-
geted for simulation only, they require heavy middleware 
implementation and knowledge and are only designed to 
execute a simulation model in a distributed manner.  

A split simulation consists of a source system whose 
components are broken into two or more groups prior to 
execution. These groups of components run under separate 
simulators that may or may not be implemented using the 
same simulation engine. Previous approaches (DEVS/HLA 
 [22], DEVS/JAVA  [15], Parallel CD++  [21]) implemented 
middleware for making virtual-time simulators collaborate 
based on splitting the execution among distributed proces-
sors, but composing a single simulation engine.  

Another more related approach to our work is taken by 
 [20] which uses independent distributed real-time simula-
tion engines that accept the internal wrapping of selected 
components wishing to interact with other simulation tools 
at a high level. Wrappers hide the components and provide a 
means of communication with components modeled in the 
foreign environments. Our approach is very similar to this 



one, but relies completely on network messages without re-
quiring the concept of wrappers. This generic interface-
based implementation can be easily implemented for inte-
gration of different tools, requiring minimal modification to 
the simulation engine.  
  
4. THE PROPOSED APPROACH 

 Models developed for a specific tool can be re-
implemented into another tool by following their DEVS 
formal specification. However, this is an error prone and 
time-consuming approach. A more robust and scalable strat-
egy is to keep components implemented in their original 
DEVS tools and make them interact over a network-centric 
and distributed infrastructure. This approach excludes cen-
tralized coordinators. However, in our decentralized ap-
proach, applications resulting from the collaborative activity 
of distributed simulators (and other real-world devices) must 
be designed to be as robust as required in the presence of 
anomalies (e.g., packet loss, corruption, and sequence inver-
sion). The participating DEVS engines do not need to worry 
about clock synchronization as it is handled at the model 
level.  

In this approach, the output ports of a DEVS model are 
interfaced to input ports of another DEVS model. While the 
simulation engines are running in real-time, different mod-
els can join this distributed network of running models and 
feed from the outputs of other models while contributing 
their own outputs to the other models in the network. The 
network interface for each DEVS port can be implemented 
in a different way (even using different network protocols), 
thanks to the abstract global message structure for transfer 
of the DEVS outputs. This is a lightweight, decoupled, 
physically-based method to provide a unified notion of time 
advance across simulators. On the other hand, this technique 
excludes the interchange of messages carrying absolute time 
references. Thus, the component-oriented aspect of DEVS 
allows different coupled components of a DEVS-based sys-
tem to operate autonomously following a common physical 
notion of time advance. This plays the role of an implicit 
synchronization mechanism for event transfers between 
DEVS tools.  
 The approach delegates to the modeler the responsibil-
ity of being aware about the worst case scenarios expected 
for many real-world non-ideal behaviors. For instance, clock 
crystals of the hardware platforms hosting each simulator 
may drift, network latencies may vary considerably depend-
ing on load conditions, and also messages can be corrupted 
or delivered disordered. While these and other potential 
problems can be tackled by adding fault tolerance mecha-
nisms into simulator engines and/or underlying communica-
tion infrastructures, there exist applications in which they 
can be regarded as non-critical. 

4.1.  Requirements  
 To implement the proposed communication scheme, a 
global message architecture is required. The message is 
supposed to carry DEVS outputs of one model to the input 
port(s) of other model(s) over a communication layer. A 
DEVS output set (Y) —defined in the DEVS formal speci-
fication— (see section 2) contains the (port, value) pair, in 
which the port is the output port and the value is the actual 
output value produced by the model. We need to transfer 
this pair over the network and inject it to another model 
running on another DEVS tool as an input pair. The follow-
ing are the DEVS I/O message fields: 
• Port_ID: an integer containing the destination model’s 

input port id. Based on this field, the receiving model 
delivers the input to the correct input port. 

• Value: a character array carrying the value. The value 
can also be a sequence of values send to a specific input 
port in the destination model. The format of the input 
value is interpreted by the input interface at the destina-
tion model 

 The generic message structure allows for submitting 
different types of data between networked models. A mes-
sage interface at each DEVS port of the model provides the 
embedding of the message as a network packet and its ex-
traction at the destination. Each port owns an independent 
interface, which can be configured to submit and receive 
different types and formats of the messages.  
 
5. EXAMPLE: E-PUCK OBSTACLE AVOIDANCE  
 Previous experimentation with ECD++ and DEVS 
models for mobile robot control applications made available 
a repository of target-specific low-level drivers. As control-
ler complexity grows and new requirements arise, it became 
convenient to split system’s design tasks into specialized 
and collaborative teams, reusing both experience and previ-
ously developed solutions. Following a component-based 
approach, we plan to split a robot control model to two main 
components: one for the control algorithms and other for 
dealing with robot-specific drivers. 
 As a case study, DEVS was used to develop a controller 
for the e-puck robot  [23]. E-puck is a mobile robot with sen-
sors and motors (see Figure 1-a). It is composed of eight in-
frared distance proximity sensors (IR), eight LEDs mounted 
on the top of the robot (see Figure 1-b), and two motors.  



   
Figure 1: a) e-puck robot        b) sensors and LEDs 

 
5.1. The DEVS Model  
 The controller model is designed to steer the robot in a 
field while avoiding obstacles. We have defined a DEVS 
model with an atomic component (e-puck0) rendering the 
behavior of the controller of the robot and a coupled com-
ponent (Top) containing the atomic component and the cou-
plings. There are 8 input ports (InIR0,…,InIR7) to the 
DEVS model, each of them receives input from one prox-
imity sensor mounted on the robot. These input ports peri-
odically receive the distances to the obstacles from the sen-
sors. There are also two output ports: OutMotor: transfer-
ring the output commands to the motors and OutLED: trans-
ferring LED on/off commands to the LEDs.  
 Based on the inputs received from the censors, the con-
troller takes the following different decisions: move for-
ward, turn 45 degrees left, turn 45 degrees right, turn 90 
degrees left, turn 90 degrees right, turn 180. Initially, the 
robot starts moving forward while receiving the periodic in-

puts from proximity sensors and analyzing them. As soon as 
an obstacle is detected, it performs one of the turning ac-
tions (to avoid the obstacle) based on the direction of the 
obstacle. The robot keeps turning until finds an empty space 
in front of it. The controller also uses LEDs to signal the ac-
tion that is being performed.  
 Figure 2 illustrates the state diagram of the e-puck0 
atomic component. The DEVSGraph state diagram  [24] 
summarizes the behavior of a DEVS atomic component by 
rendering the states, transitions, inputs, outputs and state du-
rations of the atomic component graphically. The continu-
ous edges between the states represent external transitions, 
with the input port, the input value and any condition on the 
input. The dashed lines represent internal transitions with 
the associated outputs.  
 Initially, the robot moves forward and if no obstacle is 
detected from IR0, IR1, IR6 and IR7 (the four sensors scan-
ning the front), it continues moving forward. As soon as an 
obstacle is detected, the value of IR6 sensor is specifically 
examined. If this sensor shows no obstacle, therefore the left 
corner of the robot is open resulting in a 45° turn towards 
the left side. Otherwise, it checks the IR1 value and if it 
shows an open space, the robot turns 45° to the right. If both 
IR1 and IR6 are blocked, the controller examines IR2 sensor 
and if it shows an open space, the robot performs a 90° turn 
to the left. The same story happens when IR2 is blocked and 
IR5 is open, resulting in a 90° turn to the right. If all of the 
sensors are blocked, the robot tries turning to the opposite 
direction (180°).  

 
Figure 2: E-puck atomic component state diagram 



 
5.2. The Partitioned Model  
 The e-puck logical controller is divided into two parts: 
the Controller and the Driver. The Controller is the main 
decision making unit, where the commands to avoid obsta-
cles are generated. The Driver model works as a client who 
forwards the inputs from robot to the Controller and the 
outputs from Controller to the robot. The interface to the 
robot is part of the Driver model. Figure 3 illustrates the 
partitioned e-puck model running on two workstations.  

 
Figure 3: the partitioned e-puck model    

  
 The e-puck robot communicates with the Driver model 
running on workstation 1 via Bluetooth connection. The 
Controller model runs on another workstation communicat-
ing through network infrastructure with the Driver. Figure 4 
depicts the e-puck collaborative DEVS model details. The e-
puck Controller receives IR sensor values from InIR input 
port via the network and sends the motor outputs to OutMo-
tor output port, which is forwarded to the Driver model. The 
Driver receives the IR sensor values from the e-puck robot 
through eight input ports, and submits them to the Control-
ler model by serializing them through one output port. This 
method reduces the network traffic while encapsulating all 
the values into one network packet. The Controller model 
does not deal with LED commands, while the e-puck Driver 
model generates these commands based on the motor com-
mands received from the Controller. 
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Figure 4: e-puck controller collaborative DEVS model 

 
5.3. Implementation of The Partitioned Model 
 The Controller model is implemented on PowerDEVS 
and the Driver on ECD++. We use UDP network protocol 
for message transfer over an Ethernet network. We have 
chosen UDP over TCP for its simplicity, and since the ex-
periments were done on a local network, the chances of 
loosing a UDP datagram were negligible. 
 
5.4. The ECD++ part (Robot Drivers)  
 ECD++ provides generic user-implemented interfaces 
for DEVS model’s border ports. Using this feature, the 
model can interact with the external world (e.g. hardware 
and network) by overriding an abstract C++ driver function 
for each port  
 We implemented the Driver model (Figure 4) in which 
the OutIR and InMotor DEVS ports were interfaced with the 
network and InIR0, …, InIR7, OutLED, and OutMotor were 
interfaced with the robot hardware. The Driver is initially in 
idle state waiting for the periodic inputs from IR sensors. As 
soon as it receives the first value from an IR sensor, the 
former buffers it until it receives the inputs of all sensors. 

Finally, it forwards the inputs as an array of values embed-
ded in a network packet via the OutIR port to the Controller 
running on PowerDEVS. The Driver stays in idle state lis-
tening to the inputs from IR sensors and from InMotor port, 
where the motor commands are received from the Control-
ler. The Driver generates the appropriate LED commands 
based on the received motor commands and forwards them 
to the robot. Therefore, a generic Controller model running 
on a different simulator with different platform is used to 
control a specific robot with different platform, tools, and 
interfaces. Each DEVS output is associated with an action 
on the robot. The driver functions of the robot output ports 
(OutLED and OutMotor) submit the commands to the robot 
via Bluetooth connection. An embedded program on the ro-
bot will carry out the commands on the robot hardware.  
 The following is a code snippet of the implementation 
of InMotor input port driver function on ECD++ (the other 
DEVS port driver functions are implemented in a similar 
method):  
1 bool InMotor::pDriver(Value &value){ 
2 ...  



3 if (recvfrom(s, &buff, BUFLEN, 0, 
(struct sockaddr *) &si_other, 
&slen)==-1){ 

4 ... 
5     return false; 
6     } 
7 ... 
8 network_msg result; 
9 memcpy((void*)&result,(void*)&buff,si

zeof(result)); 
10 int i;    
11 memcpy((void*)&i,(void*)result.value,

sizeof(int)); 
12 value = i;  
13 return true; 
14 } 
  
 Line 1 is the header of the driver function, which is 
supplied by a byrefrence parameter (“value”) which will be 
filled with the input received from the network. Line 3 
shows the blocking UDP receive function where the buff 
parameter will be filled by the network message. The net-
work message struct (defined in 4.1) declared in line 8 is 
filled in line 9 with the message received. The actual motor 
output is extracted from this message in line 11 and is as-
signed to “value” parameter. The input driver functions are 
separate real-time threads, which are only responsible for 
grabbing inputs from the environment (network).  
 
5.5. The PowerDEVS part (Robot Controller) 

The PowerDEVS part implements the DEVSGraph 
shown in Figure 2 (excluding the LED outputs).  Any 
DEVSGraph model can be directly converted into a Power-
DEVS atomic model by the following method: 
• The state of the atomic is defined by an enum variable s 

indicating the actual DEVSGraph state (this variable will 
have as many values as DEVSGraph states) and sigma, a 
real value variable to hold the state duration. 

• For each edge from state s1 to state s2 (s2 having a dura-
tion t2=ta(s2)) we add a case in the internal/external func-
tion:  

if (s==s1) { s=s2; sigma=t2; } 
• If the edge is from an external transition, we have to add a 

check to see if the input value is the one that triggers the 
transition. If the edge is from an internal transition, we 
have to emit the output event(s). In PowerDEVS, emitting 
multiple events in one transition is prohibited, so we have 
to emit them one at a time (in multiple internal transi-
tions). 

 The PowerDEVS model can be seen in Figure 5 where 
the IR block receives the value of the 8 IR sensors from the 
e-puck and forwards them to the Controller. The Controller 
depending on values, change its state and emits to the e-
puck through the OutMotor block one of the following 

commands: MOVE_FORWARD, TURN_45_LEFT, 
TURN_90_LEFT, TURN_45_RIGHT, TURN_90_RIGHT, 
or TURN_180.  
 We introduced two new blocks for connecting the Pow-
erDEVS side with ECD++. These blocks are NetSend and 
NetReceive. In Figure 5, the IR block is an instance of Ne-
tReceive and it receives the data from ECD++ and injects 
them to the PowerDEVS simulation. The OutMotor is an in-
stance of NetSend, it receives the events from the Controller 
and sends them to ECD++ through the network. 
 

 
Figure 5: PowerDEVS controller model 

 
 The NetSend block is responsible for sending the events 
from PowerDEVS to ECD++. It has a parameter to indicate 
to which UDP port should send the message (the IP address 
is fixed in the code).  
 The NetReceive block is in charge of receiving the UDP 
messages from ECD++ and forward them to the correct Po-
werDEVS atomic component.  
 The PowerDEVS simulation engine will receive the 
UDP message, read the port_id field from the payload and 
forward it to the corresponding NetReceive block. To this 
end, the simulation engine internally holds a mapping from 
DEVS ports to NetReceive blocks, created at initialization. 
 
5.6.  The common network messages semantics 
 As said before, the content of the UDP message is a 
fixed-size buffer were sender and receiver have to agree on 
a format. The Value field of the global message (section 4.1) 
is used with the following semantics for different ports: 
• For messages going from ECD++ to PowerDEVS the buf-

fer contains 8 doubles (8 bytes each - IEEE 754) repre-
senting the magnitude of each IR of the e-puck.  

• For messages going from PowerDEVS to ECD++, we 
only send one 4 byte integer indicating which command to 
send to the motors. 

 
6. RESULTS 
 We conducted various experiments implementing the 
example model presented in section 5. To show the results 



of the two simulators collaborating over a network, we pre-
sent a log file of the experiment with real-time timestamps, 
and discuss the results.  
 Figure 6 shows the input and output log files of ECD++ 
simulator. The input log file records all the real-time incom-
ing data (from the environment) to the model’s input ports 
while the output file saves all the outputs of a DEVS model 
(with microseconds precision). The inputs and associated 
outputs are marked with red boxes in the figure. In the first 
box of the input file, two series of the IR sensor values in-
putted at time zero and after 50 milliseconds are shown (the 
IR sensor inputs are received every 50 milliseconds.) The 
first box of the output file shows the output to the OutIR 
port, which triggers the output driver associated to this port 
to send the array of inputs containing the values of the eight 
IR sensors. Therefore, when all of the IR values are re-
ceived, they are forwarded to the Controller. Box 2 of the 
input file shows an input signal received from InMotor port 
containing value “1”, which is interpreted in box 2 of the 
output file with the accompanying LED commands (added 
by the Driver). The same sequence happens in box 3 where 
the robot has found an obstacle and the associated IR sensor 
values are forwarded to the Controller, hence the Controller 
is instructing the robot to spin 180 degrees.  

 
Figure 6: ECD++ input and output log files 

 
A selected progression of UDP messages interchange taken 
from the simulation results can be seen in the sequence dia-
gram of Figure 7. The messages going from the Controller 
to the Drivel model are motor commands (the same as in the 
log in Figure 6) while the messages from the Drivel to the 
Controller are the values from the 8 IR sensors. According 
to these values, the Controller is in charge of deciding 
whether the front is blocked. (see message labeled “Front is 
Blocked” in Figure 7).  
 

 
Figure 7: Sequence diagram of the simulation 

  
A video of the collaborative e-puck model in action can be 
viewed online in  [25].  
 
7. CONCLUSION  
 We introduced a generic lightweight interface for net-
work I/O message transfers between DEVS models running 
on different DEVS-based tools. We showed the suitability 
of our approach by reproducing experiments with an e-puck 
robot and a collision avoidance application, monitoring cor-
rectness for behavior (qualitatively) and network massaging 
(quantitatively). The robot succeeded to perform obstacle 
detection and direction changing when the original DEVS-
based system was split into two distributed real-time models 
Controller and Drivers running on PowerDEVS and 
ECD++, respectively.  

Thanks to the unambiguous formal specification of 
DEVS, the problem of splitting a model into components 
deployable to distributed real-time tools can be confined in-
to an implementation layer, preserving original model speci-
fications. Also thanks to DEVS formal definition, the task 
of migrating subcomponents previously developed for 
ECD++ to PowerDEVS can be synthesized into a repeatable 
procedure, minimizing effort and errors. Another potential 
advantage of interfacing ECD++ to PowerDEVS is the col-
laborative execution of discrete and continuous systems un-
der DEVS specifications.  

Nevertheless, in the approach presented in this work 
some limitations must be observed. Messages across simula-
tors cannot bear time references into their semantics, leaving 
the synchronization to the modeling level, where the models 
should be in proper states while transferring data. Yet, for 
those applications where synchronization is mandatory, ad-
ditional logical layers for exchanging timing signals can be 



implemented on top of the networking framework presented 
in this work. This represents the basis of our next research 
steps and efforts. 
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