
Component-Oriented Interoperation of Real-Time DEVS Engines

Mohammad Moallemi, Gabriel Wainer
Dept. of Systems and Computer Engineering
Carleton University. Centre of Visualization

and Simulation (V-Sim)
1125 Colonel By Dr. Ottawa, ON. Canada.
{moallemi, gwainer}@sce.carleton.ca

Federico Bergero
1Laboratorio de Sistemas Dinámicos

Facultad de Ciencias Exactas, Ingeniería
y Agrimensura. Universidad Nacional de

Rosario. CIFASIS–CONICET.
Riobamba 245 bis (2000) Rosario, Argen-

tina
bergero@cifasis-conicet.gov.ar

Rodrigo Castro1,2
2Departamento de Computación
Universidad de Buenos Aires.

Facultad de Ciencias Exactas y Naturales.
Ciudad Universitaria, Pabellón I.
(1428) Buenos Aires, Argentina.

rcastro@dc.uba.ar

Keywords: Discrete-Event Simulation, DEVS, Embedded
Systems, Real-Time Simulation and Control, Simulation-
Driven Engineering

Abstract
Model reuse and interoperability are cost and effort saving
solutions for the simulation-driven development of embed-
ded real-time systems. Different embedded systems share
the same components (e.g. motors, sensors, actuators, con-
trollers, etc), and remodeling them is costly in terms of time
and effort. Instead, by combining different existing models,
developers can improve productivity. To do so, we here pre-
sent a generic lightweight interface for message transfers
between DEVS models running on different DEVS-based
tools. The idea is to allow defining component-based mod-
els to be deployed on different tools collaborating in real-
time. The components work autonomously as separate
DEVS models, and exchange messages at the input-output
level over a network infrastructure. We present a proof of
concept implementation in which we interfaced ECD++ and
PowerDEVS, to DEVS-based tools.

1. INTRODUCTION
 Real-time application development has evolved rapidly
because of the fast growing use of automated systems.
These applications have usually posed interesting challenges
due to the complexity of the tasks executed. As the size and
complexity of the application grows, the design process
tends to demand increasingly challenging multidisciplinary
development efforts. Real-time systems with hard con-
straints require a more robust verification mechanism, due
to their critical applications [1].
 A solution that has been successful tackling these prob-
lems is the adoption of Modeling and Simulation (M&S)
methodologies to help the development task. In particular,
M&S methods using formal backgrounds have shown prom-
ising results in making these multidisciplinary systems de-
velopment tasks manageable. Although M&S is often used
in the early stages of real-time application development,
when the focus of the project moves towards the target im-
plementation, the early-simulated models are usually aban-
doned. Instead, a M&S-Driven Engineering approach [2]
can deal with these activities. The idea is to use M&S at

every step in the application development (including design,
development, testing, and deployment). M&S is not only a
foremost component in the development, but also goes fur-
ther by utilizing the simulated models as the final target ar-
chitecture and also offers reuse of the existing components.
This leads to reduced cost and effort, while enhancing sys-
tem capabilities and improving the quality of the final prod-
uct. The use of formal M&S approaches provides even more
advantages as theory allows model verification even before
the actual model is implemented by using formal model
verification techniques [3] [4]. This technique also provides
a reliable test-bed for applications that are impractical or
impossible to verify under the actual operating conditions.
Deploying the same simulation models on the target plat-
form guarantees effective simulation-based validation of the
product. Our method is based on DEVS [5] (Discrete Event
System Specification) a formal modeling approach that was
originally defined for discrete-event simulation. DEVS has
been extended to support M&S development for real-time
applications [6] [7] [8] [9], and several DEVS-based modeling
tools are available offering graphical design interfaces for
easier design and verification of the models [9]
 [12] [14] [15].

 In the present work, we introduce a practical, generic
and lightweight interface for deploying real-time solutions
communicating DEVS models implemented in different
tools. We present our approach applied to sensible example
models produced for the ECD++ [11] and PowerDEVS [12]
toolkits

Our main motivation is to follow a Hardware-In-The-
Loop approach where simulators themselves see each other
as distributed real-world devices (black boxes), interacting
solely at the network messaging level. The main contribu-
tion of this work is to provide a proof of concept showing
that distributed M&S-based control applications can be im-
plemented interfacing ECD++ and PowerDEVS relying on a
very lightweight network-centric mechanism; reusing previ-
ously implemented models for driving mobile robots
(ECD++) and reusing previously specified DEVS control-
lers (re-implemented in PowerDEVS).

 Another motive for this work is to introduce a collabo-
ration technique between discrete and continuous M&S-

based systems under DEVS specifications. PowerDEVS is a
natural choice for implementing continuous and hybrid con-
trollers in a methodological way in which, it deploys DEVS
to approximate continuous systems and to solve differential
equations by using numerical methods like the Quantized
State System (QSS) [16]. Our goal is to benefit from the
formal and hierarchical features of DEVS to integrated the
discrete models in ECD++ with continuous and hybrid ones
in PowerDEVS.

2. DEVS
 The DEVS formalism permits defining hierarchical
models, capable of interacting with each other and respond-
ing to the external events. The structure is composed of
atomic and coupled components, in which the atomic com-
ponents are the main behavioral and processing entities
while the coupled components are responsible for maintain-
ing the hierarchical structure and the couplings between the
components.
 A DEVS atomic component is formally defined by:

AM = < X, S, Y, δext, δint, λ, ta >, where:
• X: a set of external input event types
• S: a sequential state set
• Y: an output set
• δext: Q × X → S, an external transition function
• Where Q is the total state set of M = {(s, e) |s ∈ S and

0 ≤ e ≤ ta(s)}
• δint: S → S, an internal transition function
• λ: S → Y , an output function
• ta: S → R+

0,∞, a time advance function which maps
each state to a time interval

 A coupled component connects the basic components
together in order to form a new model. This component can
itself be employed as a component in a larger coupled mod-
el, thereby allowing the hierarchical construction of com-
plex models. The coupled model is defined as:

CM = <X, Y, D, {Md|d∈D}, EIC, EOC, IC, Select>
, where:

• X = {(p, v) | p ∈ IPorts, v ∈ Xp} is the set of input
ports and values;

• Y = {(p, v) | p ∈ OPorts, v ∈ Yp} is the set of output
ports and values;

• D is the set of the component names
The component coupling is subject to the following re-

quirements. External input coupling (EIC) connects external
inputs to component inputs: EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈
IPorts, d∈D, ipd∈IPortsd}, External output coupling (EOC)
connects component outputs to external outputs: EOC ⊆ {((d,
opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd}, Internal
coupling (IC) connects component outputs to component in-
puts: IC ⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa,
ipb∈IPortsb}, and SELECT: 2M → M is a tie-breaking selec-
tor.

2.1. DEVS-Based Tools

ECD++ is a general-purpose object-oriented software
able to execute DEVS models in real-time and allows users
to develop hardware-in-the-loop applications being able to
integrate real-world phenomena with DEVS-based envi-
ronments. ECD++ deploys real-time services provided by
the underlying real-time kernel to execute the DEVS ab-
stract simulation algorithm. Its extensions allow for model-
ing and execution of real-time systems with tight dedaline
constraints.

PowerDEVS is a software tool for DEVS modeling and
simulation oriented to the simulation of hybrid systems.
Among other features, it can perform real-time simulations
permitting the design and implementation of synchronous
and asynchronous digital controllers. Combined with its
continuous system simulation library (based on the QSS
quantization-based numerical methods) PowerDEVS is an
efficient tool for real-time simulation of physical systems. In
presence of strong discontinuities, it simulates sensibly fast-
er than classic tools based on traditional numerical integra-
tion algorithms.

 Due to these features, PowerDEVS has many potential
users in the real-time automatic control community, mostly
composed by non-DEVS-users. To tackle this gap, Power-
DEVS offers a graphical interface very similar to those of
the most popular tools for modeling, simulation and imple-
mentation of real-time controllers (Simulink, Scicos, etc.)

3. RELATED WORKS
 The idea of distributed simulation using DEVS has
been followed in previous works [17] [16] [18] [19] where
sophisticated middleware are proposed to deal with issues
such as synchronization, fault-tolerance and message rout-
ing, among others. While these approaches are mainly tar-
geted for simulation only, they require heavy middleware
implementation and knowledge and are only designed to
execute a simulation model in a distributed manner.

A split simulation consists of a source system whose
components are broken into two or more groups prior to
execution. These groups of components run under separate
simulators that may or may not be implemented using the
same simulation engine. Previous approaches (DEVS/HLA
 [22], DEVS/JAVA [15], Parallel CD++ [21]) implemented
middleware for making virtual-time simulators collaborate
based on splitting the execution among distributed proces-
sors, but composing a single simulation engine.

Another more related approach to our work is taken by
 [20] which uses independent distributed real-time simula-
tion engines that accept the internal wrapping of selected
components wishing to interact with other simulation tools
at a high level. Wrappers hide the components and provide a
means of communication with components modeled in the
foreign environments. Our approach is very similar to this

one, but relies completely on network messages without re-
quiring the concept of wrappers. This generic interface-
based implementation can be easily implemented for inte-
gration of different tools, requiring minimal modification to
the simulation engine.

4. THE PROPOSED APPROACH

 Models developed for a specific tool can be re-
implemented into another tool by following their DEVS
formal specification. However, this is an error prone and
time-consuming approach. A more robust and scalable strat-
egy is to keep components implemented in their original
DEVS tools and make them interact over a network-centric
and distributed infrastructure. This approach excludes cen-
tralized coordinators. However, in our decentralized ap-
proach, applications resulting from the collaborative activity
of distributed simulators (and other real-world devices) must
be designed to be as robust as required in the presence of
anomalies (e.g., packet loss, corruption, and sequence inver-
sion). The participating DEVS engines do not need to worry
about clock synchronization as it is handled at the model
level.

In this approach, the output ports of a DEVS model are
interfaced to input ports of another DEVS model. While the
simulation engines are running in real-time, different mod-
els can join this distributed network of running models and
feed from the outputs of other models while contributing
their own outputs to the other models in the network. The
network interface for each DEVS port can be implemented
in a different way (even using different network protocols),
thanks to the abstract global message structure for transfer
of the DEVS outputs. This is a lightweight, decoupled,
physically-based method to provide a unified notion of time
advance across simulators. On the other hand, this technique
excludes the interchange of messages carrying absolute time
references. Thus, the component-oriented aspect of DEVS
allows different coupled components of a DEVS-based sys-
tem to operate autonomously following a common physical
notion of time advance. This plays the role of an implicit
synchronization mechanism for event transfers between
DEVS tools.
 The approach delegates to the modeler the responsibil-
ity of being aware about the worst case scenarios expected
for many real-world non-ideal behaviors. For instance, clock
crystals of the hardware platforms hosting each simulator
may drift, network latencies may vary considerably depend-
ing on load conditions, and also messages can be corrupted
or delivered disordered. While these and other potential
problems can be tackled by adding fault tolerance mecha-
nisms into simulator engines and/or underlying communica-
tion infrastructures, there exist applications in which they
can be regarded as non-critical.

4.1. Requirements
 To implement the proposed communication scheme, a
global message architecture is required. The message is
supposed to carry DEVS outputs of one model to the input
port(s) of other model(s) over a communication layer. A
DEVS output set (Y) —defined in the DEVS formal speci-
fication— (see section 2) contains the (port, value) pair, in
which the port is the output port and the value is the actual
output value produced by the model. We need to transfer
this pair over the network and inject it to another model
running on another DEVS tool as an input pair. The follow-
ing are the DEVS I/O message fields:
• Port_ID: an integer containing the destination model’s

input port id. Based on this field, the receiving model
delivers the input to the correct input port.

• Value: a character array carrying the value. The value
can also be a sequence of values send to a specific input
port in the destination model. The format of the input
value is interpreted by the input interface at the destina-
tion model

 The generic message structure allows for submitting
different types of data between networked models. A mes-
sage interface at each DEVS port of the model provides the
embedding of the message as a network packet and its ex-
traction at the destination. Each port owns an independent
interface, which can be configured to submit and receive
different types and formats of the messages.

5. EXAMPLE: E-PUCK OBSTACLE AVOIDANCE
 Previous experimentation with ECD++ and DEVS
models for mobile robot control applications made available
a repository of target-specific low-level drivers. As control-
ler complexity grows and new requirements arise, it became
convenient to split system’s design tasks into specialized
and collaborative teams, reusing both experience and previ-
ously developed solutions. Following a component-based
approach, we plan to split a robot control model to two main
components: one for the control algorithms and other for
dealing with robot-specific drivers.
 As a case study, DEVS was used to develop a controller
for the e-puck robot [23]. E-puck is a mobile robot with sen-
sors and motors (see Figure 1-a). It is composed of eight in-
frared distance proximity sensors (IR), eight LEDs mounted
on the top of the robot (see Figure 1-b), and two motors.

Figure 1: a) e-puck robot b) sensors and LEDs

5.1. The DEVS Model
 The controller model is designed to steer the robot in a
field while avoiding obstacles. We have defined a DEVS
model with an atomic component (e-puck0) rendering the
behavior of the controller of the robot and a coupled com-
ponent (Top) containing the atomic component and the cou-
plings. There are 8 input ports (InIR0,…,InIR7) to the
DEVS model, each of them receives input from one prox-
imity sensor mounted on the robot. These input ports peri-
odically receive the distances to the obstacles from the sen-
sors. There are also two output ports: OutMotor: transfer-
ring the output commands to the motors and OutLED: trans-
ferring LED on/off commands to the LEDs.
 Based on the inputs received from the censors, the con-
troller takes the following different decisions: move for-
ward, turn 45 degrees left, turn 45 degrees right, turn 90
degrees left, turn 90 degrees right, turn 180. Initially, the
robot starts moving forward while receiving the periodic in-

puts from proximity sensors and analyzing them. As soon as
an obstacle is detected, it performs one of the turning ac-
tions (to avoid the obstacle) based on the direction of the
obstacle. The robot keeps turning until finds an empty space
in front of it. The controller also uses LEDs to signal the ac-
tion that is being performed.
 Figure 2 illustrates the state diagram of the e-puck0
atomic component. The DEVSGraph state diagram [24]
summarizes the behavior of a DEVS atomic component by
rendering the states, transitions, inputs, outputs and state du-
rations of the atomic component graphically. The continu-
ous edges between the states represent external transitions,
with the input port, the input value and any condition on the
input. The dashed lines represent internal transitions with
the associated outputs.
 Initially, the robot moves forward and if no obstacle is
detected from IR0, IR1, IR6 and IR7 (the four sensors scan-
ning the front), it continues moving forward. As soon as an
obstacle is detected, the value of IR6 sensor is specifically
examined. If this sensor shows no obstacle, therefore the left
corner of the robot is open resulting in a 45° turn towards
the left side. Otherwise, it checks the IR1 value and if it
shows an open space, the robot turns 45° to the right. If both
IR1 and IR6 are blocked, the controller examines IR2 sensor
and if it shows an open space, the robot performs a 90° turn
to the left. The same story happens when IR2 is blocked and
IR5 is open, resulting in a 90° turn to the right. If all of the
sensors are blocked, the robot tries turning to the opposite
direction (180°).

Figure 2: E-puck atomic component state diagram

5.2. The Partitioned Model
 The e-puck logical controller is divided into two parts:
the Controller and the Driver. The Controller is the main
decision making unit, where the commands to avoid obsta-
cles are generated. The Driver model works as a client who
forwards the inputs from robot to the Controller and the
outputs from Controller to the robot. The interface to the
robot is part of the Driver model. Figure 3 illustrates the
partitioned e-puck model running on two workstations.

Figure 3: the partitioned e-puck model

 The e-puck robot communicates with the Driver model
running on workstation 1 via Bluetooth connection. The
Controller model runs on another workstation communicat-
ing through network infrastructure with the Driver. Figure 4
depicts the e-puck collaborative DEVS model details. The e-
puck Controller receives IR sensor values from InIR input
port via the network and sends the motor outputs to OutMo-
tor output port, which is forwarded to the Driver model. The
Driver receives the IR sensor values from the e-puck robot
through eight input ports, and submits them to the Control-
ler model by serializing them through one output port. This
method reduces the network traffic while encapsulating all
the values into one network packet. The Controller model
does not deal with LED commands, while the e-puck Driver
model generates these commands based on the motor com-
mands received from the Controller.

Epuck

Driver

Proximity

sensors

LEDs

Motors

Epuck

Controller

Network

Network

InIR0

...

IR0

...

LED OutLED

Motor OutMotor

OutIR IR2net

Net2MotorInMotor

InIRIR

Motor OutMotor

InIR7IR7

Figure 4: e-puck controller collaborative DEVS model

5.3. Implementation of The Partitioned Model
 The Controller model is implemented on PowerDEVS
and the Driver on ECD++. We use UDP network protocol
for message transfer over an Ethernet network. We have
chosen UDP over TCP for its simplicity, and since the ex-
periments were done on a local network, the chances of
loosing a UDP datagram were negligible.

5.4. The ECD++ part (Robot Drivers)
 ECD++ provides generic user-implemented interfaces
for DEVS model’s border ports. Using this feature, the
model can interact with the external world (e.g. hardware
and network) by overriding an abstract C++ driver function
for each port
 We implemented the Driver model (Figure 4) in which
the OutIR and InMotor DEVS ports were interfaced with the
network and InIR0, …, InIR7, OutLED, and OutMotor were
interfaced with the robot hardware. The Driver is initially in
idle state waiting for the periodic inputs from IR sensors. As
soon as it receives the first value from an IR sensor, the
former buffers it until it receives the inputs of all sensors.

Finally, it forwards the inputs as an array of values embed-
ded in a network packet via the OutIR port to the Controller
running on PowerDEVS. The Driver stays in idle state lis-
tening to the inputs from IR sensors and from InMotor port,
where the motor commands are received from the Control-
ler. The Driver generates the appropriate LED commands
based on the received motor commands and forwards them
to the robot. Therefore, a generic Controller model running
on a different simulator with different platform is used to
control a specific robot with different platform, tools, and
interfaces. Each DEVS output is associated with an action
on the robot. The driver functions of the robot output ports
(OutLED and OutMotor) submit the commands to the robot
via Bluetooth connection. An embedded program on the ro-
bot will carry out the commands on the robot hardware.
 The following is a code snippet of the implementation
of InMotor input port driver function on ECD++ (the other
DEVS port driver functions are implemented in a similar
method):
1 bool InMotor::pDriver(Value &value){
2 ...

3 if (recvfrom(s, &buff, BUFLEN, 0,
(struct sockaddr *) &si_other,
&slen)==-1){

4 ...
5 return false;
6 }
7 ...
8 network_msg result;
9 memcpy((void*)&result,(void*)&buff,si

zeof(result));
10 int i;
11 memcpy((void*)&i,(void*)result.value,

sizeof(int));
12 value = i;
13 return true;
14 }

 Line 1 is the header of the driver function, which is
supplied by a byrefrence parameter (“value”) which will be
filled with the input received from the network. Line 3
shows the blocking UDP receive function where the buff
parameter will be filled by the network message. The net-
work message struct (defined in 4.1) declared in line 8 is
filled in line 9 with the message received. The actual motor
output is extracted from this message in line 11 and is as-
signed to “value” parameter. The input driver functions are
separate real-time threads, which are only responsible for
grabbing inputs from the environment (network).

5.5. The PowerDEVS part (Robot Controller)

The PowerDEVS part implements the DEVSGraph
shown in Figure 2 (excluding the LED outputs). Any
DEVSGraph model can be directly converted into a Power-
DEVS atomic model by the following method:
• The state of the atomic is defined by an enum variable s

indicating the actual DEVSGraph state (this variable will
have as many values as DEVSGraph states) and sigma, a
real value variable to hold the state duration.

• For each edge from state s1 to state s2 (s2 having a dura-
tion t2=ta(s2)) we add a case in the internal/external func-
tion:

if (s==s1) { s=s2; sigma=t2; }
• If the edge is from an external transition, we have to add a

check to see if the input value is the one that triggers the
transition. If the edge is from an internal transition, we
have to emit the output event(s). In PowerDEVS, emitting
multiple events in one transition is prohibited, so we have
to emit them one at a time (in multiple internal transi-
tions).

 The PowerDEVS model can be seen in Figure 5 where
the IR block receives the value of the 8 IR sensors from the
e-puck and forwards them to the Controller. The Controller
depending on values, change its state and emits to the e-
puck through the OutMotor block one of the following

commands: MOVE_FORWARD, TURN_45_LEFT,
TURN_90_LEFT, TURN_45_RIGHT, TURN_90_RIGHT,
or TURN_180.
 We introduced two new blocks for connecting the Pow-
erDEVS side with ECD++. These blocks are NetSend and
NetReceive. In Figure 5, the IR block is an instance of Ne-
tReceive and it receives the data from ECD++ and injects
them to the PowerDEVS simulation. The OutMotor is an in-
stance of NetSend, it receives the events from the Controller
and sends them to ECD++ through the network.

Figure 5: PowerDEVS controller model

 The NetSend block is responsible for sending the events
from PowerDEVS to ECD++. It has a parameter to indicate
to which UDP port should send the message (the IP address
is fixed in the code).
 The NetReceive block is in charge of receiving the UDP
messages from ECD++ and forward them to the correct Po-
werDEVS atomic component.
 The PowerDEVS simulation engine will receive the
UDP message, read the port_id field from the payload and
forward it to the corresponding NetReceive block. To this
end, the simulation engine internally holds a mapping from
DEVS ports to NetReceive blocks, created at initialization.

5.6. The common network messages semantics
 As said before, the content of the UDP message is a
fixed-size buffer were sender and receiver have to agree on
a format. The Value field of the global message (section 4.1)
is used with the following semantics for different ports:
• For messages going from ECD++ to PowerDEVS the buf-

fer contains 8 doubles (8 bytes each - IEEE 754) repre-
senting the magnitude of each IR of the e-puck.

• For messages going from PowerDEVS to ECD++, we
only send one 4 byte integer indicating which command to
send to the motors.

6. RESULTS
 We conducted various experiments implementing the
example model presented in section 5. To show the results

of the two simulators collaborating over a network, we pre-
sent a log file of the experiment with real-time timestamps,
and discuss the results.
 Figure 6 shows the input and output log files of ECD++
simulator. The input log file records all the real-time incom-
ing data (from the environment) to the model’s input ports
while the output file saves all the outputs of a DEVS model
(with microseconds precision). The inputs and associated
outputs are marked with red boxes in the figure. In the first
box of the input file, two series of the IR sensor values in-
putted at time zero and after 50 milliseconds are shown (the
IR sensor inputs are received every 50 milliseconds.) The
first box of the output file shows the output to the OutIR
port, which triggers the output driver associated to this port
to send the array of inputs containing the values of the eight
IR sensors. Therefore, when all of the IR values are re-
ceived, they are forwarded to the Controller. Box 2 of the
input file shows an input signal received from InMotor port
containing value “1”, which is interpreted in box 2 of the
output file with the accompanying LED commands (added
by the Driver). The same sequence happens in box 3 where
the robot has found an obstacle and the associated IR sensor
values are forwarded to the Controller, hence the Controller
is instructing the robot to spin 180 degrees.

Figure 6: ECD++ input and output log files

A selected progression of UDP messages interchange taken
from the simulation results can be seen in the sequence dia-
gram of Figure 7. The messages going from the Controller
to the Drivel model are motor commands (the same as in the
log in Figure 6) while the messages from the Drivel to the
Controller are the values from the 8 IR sensors. According
to these values, the Controller is in charge of deciding
whether the front is blocked. (see message labeled “Front is
Blocked” in Figure 7).

Figure 7: Sequence diagram of the simulation

A video of the collaborative e-puck model in action can be
viewed online in [25].

7. CONCLUSION
 We introduced a generic lightweight interface for net-
work I/O message transfers between DEVS models running
on different DEVS-based tools. We showed the suitability
of our approach by reproducing experiments with an e-puck
robot and a collision avoidance application, monitoring cor-
rectness for behavior (qualitatively) and network massaging
(quantitatively). The robot succeeded to perform obstacle
detection and direction changing when the original DEVS-
based system was split into two distributed real-time models
Controller and Drivers running on PowerDEVS and
ECD++, respectively.

Thanks to the unambiguous formal specification of
DEVS, the problem of splitting a model into components
deployable to distributed real-time tools can be confined in-
to an implementation layer, preserving original model speci-
fications. Also thanks to DEVS formal definition, the task
of migrating subcomponents previously developed for
ECD++ to PowerDEVS can be synthesized into a repeatable
procedure, minimizing effort and errors. Another potential
advantage of interfacing ECD++ to PowerDEVS is the col-
laborative execution of discrete and continuous systems un-
der DEVS specifications.

Nevertheless, in the approach presented in this work
some limitations must be observed. Messages across simula-
tors cannot bear time references into their semantics, leaving
the synchronization to the modeling level, where the models
should be in proper states while transferring data. Yet, for
those applications where synchronization is mandatory, ad-
ditional logical layers for exchanging timing signals can be

implemented on top of the networking framework presented
in this work. This represents the basis of our next research
steps and efforts.

References
[1] Liu, J. "Real-Time Systems". Prentice-Hall,

2000.
[2] G. Wainer, E. Glinsky, P. MacSween “A Model-Driven

Technique for Development of Embedded Systems
Based on the DEVS Formalism”. In Model-driven
Software Development - Volume II of Research and
Practice in Software Engineering. S. Beydeda and V.
Gruhn Eds. Springer-Verlag. 2005.

[3] S. Merz, N. Navet. “Modeling and Verification of Real-
Time Systems: Formalisms and Software Tools”. John
Wiley & Sons, publishing Inc. 2008.

[4] H. Saadawi, G. Wainer. “Verification of real-time
DEVS models”. Proceedings of DEVS Symposium
2009. San Diego, CA. 2009.

[5] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modeling
and Simulation”. Academic Press 2000, ISBN-10:
0127784551.

[6] Hong J. S, Song H. H, Kim T. G. and Park K. H “A
Real-Time Discrete Event System Specification For-
malism for Seamless Real-Time Software Develop-
ment” 1997, Springer Netherlands.

[7] Hu, X.; Zeigler, B.P. “Model Continuity in the Design
of Dynamic Distributed Real-Time Systems”, IEEE
Transactions on Systems, Man And Cybernetics— Part
A: Systems And Humans, 35: 6, pp. 867- 878, Novem-
ber, 2005.

[8] Cho S. M. and Kim T. G. “Real-Time DEVS Simula-
tion: Concurrent, Time-Selective Execution of Com-
bined RT-DEVS Model and Interactive Environment”
In Proceeding of 1998 Summer Simulation Conference,
Reno, Nevada.

[9] Moallemi, M..; Wainer, G. "Designing an Interface for
Real-Time and Embedded DEVS", Proceedings of
Symposium of Theory of Modeling and Simulation, Or-
lando, FL, 2010.

[10] Wainer, G. "CD++: a toolkit to define discrete-event
models". Software, Practice and Experience. Wiley.
Vol. 32, No.3. pp. 1261-1306. November 2002.

[11] YU, J.; WAINER, G. “ECD++: a tool for modeling
embedded applications”. In Proceedings of the 2007
SCS Summer Computer Simulation Conference. San
Diego, CA. 2007.

[12] Federico Bergero and Ernesto Kofman. “Powerdevs: A
Tool for Hybrid System Modeling and Real-time Simu-
lation”. SIMULATION, 2010.

[13] Ernesto Kofman. “Discrete Event Simulation of Hybrid
Systems”. SIAM Journal on Scientific Computing,
25(5):1771–1797, 2004.

[14] Traoré, M. 2008, “SimStudio: a next generation model-
ing and simulation framework”. Proceedings of SIMU-
Tools 2008. Marseille, France.

[15] Sarjoughian, H; Zeigler, B. 1998, “DEVSJAVA: Basis
for a DEVS-based collaborative M&S environment”
proceedings of the International Conference on Web-
based Modeling & Simulation, San Diego, CA.

[16] Francois Cellier and Ernesto Kofman “Continuous Sys-
tem Simulation” Springer, New York, 2006.

[17] Cho, Y. K.; Hu, X.; Zeigler, B.P. “The
RTDEVS/CORBA Environment for Simulation-Based
Design of Distributed Real-Time Systems”, Simulation:
Transactions of the Society for Modeling and Simula-
tion International, Volume 79, Number 4, 2003.

[18] Kim, Y.J. and Kim, T.G. “A heterogeneous distributed
simulation framework based on DEVS formalism”,
Proceedings of the Sixth Annual Conference On Artifi-
cial Intelligence, Simulation and Planning in High
Autonomy Systems, pp 116-121, 1996.

[19] Kim, Yong Jae and Kim, Jae Hyun and Kim, Tag Gon
“Heterogeneous Simulation Framework Using DEVS
BUS” SIMULATION, 2003

[20] Lombardi, S., G. Wainer, and B. P. Zeigler.
“Interoperation of DEVS models in DEVS/C# and
CD++” Proceedings of SISO Fall Interoperability
Workshop, Huntsville, AL, 2006

[21] Troccoli, A.; Wainer, G. “Implementing Parallel
CD++”. Proceedings of the Annual Simulation Sympo-
sium. Orlando, FL. 2003.

[22] H. Sarjoughian, B. Zeigler “DEVS and HLA: Compli-
mentary Paradigms For M&S?", Transactions of the
SCS Vol. 17, pp. 187-197, 2000.

[23] E-puck robot website available at: http://www.e-
puck.org/.

[24] G. Christen, A. Dobniewski and G. Wainer, "Modeling
State-Based DEVS Models in CD++". In Proceedings
of MGA, Advanced Simulation Technologies Confer-
ence 2004 (ASTC'04). Arlington, VA. U.S.A.

[25] Shared e-puck model video, available at:
http://www.youtube.com/arslab#p/u/12/iRqrwkPL-kQ,
accessed Jan. 2010.

